Dynamic power management approaches based on neural network
Lu, HX; Lu, Y; Tang, ZF; Wang, SJ; Lu, HX, Chinese Acad Sci, Inst Semicond, Neural Network Lab, Beijing 100083, Peoples R China.
2007
会议名称1st International Conference Bio-Inspired Computing -Theory and Applications
会议录名称DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS
页码14: 334-340 Part 1 Suppl
会议日期SEP 18-22, 2006
会议地点Wuhan, PEOPLES R CHINA
出版地C/O DCDIS JOURNAL, 317 KAREN PLACE, WATERLOO, ONTARIO N2L 6K8, CANADA
出版者WATAM PRESS
ISSN1492-8760
部门归属[lu, huaxiang; lu, yan; tang, zhifang; wang, shoujue] chinese acad sci, inst semicond, neural network lab, beijing 100083, peoples r china
摘要Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
关键词System
学科领域人工智能
主办者作者关键词: power management; BPPM; RBFPM
收录类别CPCI-S
语种英语
文献类型会议论文
条目标识符http://ir.semi.ac.cn/handle/172111/7878
专题中国科学院半导体研究所(2009年前)
通讯作者Lu, HX, Chinese Acad Sci, Inst Semicond, Neural Network Lab, Beijing 100083, Peoples R China.
推荐引用方式
GB/T 7714
Lu, HX,Lu, Y,Tang, ZF,et al. Dynamic power management approaches based on neural network[C]. C/O DCDIS JOURNAL, 317 KAREN PLACE, WATERLOO, ONTARIO N2L 6K8, CANADA:WATAM PRESS,2007:14: 334-340 Part 1 Suppl.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, HX]的文章
[Lu, Y]的文章
[Tang, ZF]的文章
百度学术
百度学术中相似的文章
[Lu, HX]的文章
[Lu, Y]的文章
[Tang, ZF]的文章
必应学术
必应学术中相似的文章
[Lu, HX]的文章
[Lu, Y]的文章
[Tang, ZF]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。