SEMI OpenIR  > 半导体超晶格国家重点实验室
CdX(X=S, Se, Te)半导体体材料及纳米线应变效应的第一性原理研究
其他题名
相琳琳
学位类型硕士
导师杨身园
2017-05-31
学位授予单位中国科学院研究生院
学位授予地点北京
学位专业凝聚态物理
关键词第一性原理计算 电子结构性质 单轴应变 Ii-vi族半导体材料 纳米线
摘要因其与太阳能光谱匹配的直接带隙以及良好的光吸收和发光性能,纤锌矿结构的CdX(X=S,Se,Te)体材料及纳米结构受到了越来越多的关注。应变是调控半导体体材料和纳米结构性质的重要手段。由于表面效应与量子受限效应,应变对CdX纳米结构性质的调控作用可能表现出与体材料不同的特性。本文利用基于密度泛函理论的第一性原理计算方法,详细研究并比较了[0001]方向单轴应变对纤锌矿结构的CdX体材料和单组分纳米线的原子结构和电子结构的影响。我们发现,对CdX体材料,单轴应变导致轴向键长和非轴向键长的大小关系在临界应变处反转,使得价带顶(VBM)的重空穴(HH)和晶体场空穴(CH)带发生位置交换,最终导致体系带隙和空穴有效质量随单轴应变呈线性变化。而电子有效质量与导带底(CBM)-重空穴带能量差呈现线性关系。
无应变时,表面收缩会影响[0001]方向的单组分CdX纳米线的平均轴向键长和平均非轴向键长的大小关系,进而影响VBM态的特征。以{10-10}为侧面的直径较大的纳米线以类HH态为VBM,而以{11-20}为侧面的纳米则以类CH态为VBM。单轴应变下,键长平均值大小关系发生反转,导致HH-CH带在临界应变处位置交换,带隙与空穴有效质量呈现高度非线性,与体材料相似。与体材料不同的是,单组分纳米线的林界应变值与无应变时纳米线的VBM态特征密切相关。以类HH态和类CH态为VBM的纳米线的临界应变值分别在压应变和拉应变范围。此外由于HH和CH带的电荷空间分布情况不同,可利用应变调控VBM态的空间分布,进而调控电子态和空穴态的空间交叠程度。而对于所有的单组分纳米线,电子有效质量均与CBM-HH能量差呈良好线性关系。
此外,我们对CdX材料构成的芯/壳纳米线异质结的原子结构和带隙组分变化做了初步分析。以CdSe为芯,以CdS和CdTe为壳,可分别构成第I和II类型异质结。芯区域分别受到本征压缩和拉伸应变作用,应变在空间分布比较均匀且各向异性。但壳区域的应变空间分布不均匀且各向异性明显。纳米线异质结的电子结构受本征应变和量子受限效应的共同作用。
本文揭示了应变对CdX体材料和纳米线性质影响的异同,有助于理解应变对纳米结构性质的调控作用,并可能为实验上利用应变设计具有特定性质的纳米结构提供一定的指导作用。

 

其他摘要Wurtzite CdX(X=S, Se, Te) semiconductors and nanostructures have attracted a lot of attention because of the direct band gaps well-matched to the solar spectrum, good light absorption and emission. Strain engineering is an effective way to tune the properties of semiconductors and nanostructures. Due to surface effect and quantum confinement effect, the variations of properties of CdX nanostructures under strain may be different from that of bulk materials. In this thesis, using first-principles calculations based on density functional theory, we systematically study and compare the influence of uniaxial [0001] strain on the structural deformation and electronic structures of CdX bulk and nanowires (NWs). We find that, for CdX bulk materials, the switch of the axial bondlength and the nonaixal bondlength induced by the uniaxial strain leads to the heavy hole (HH) and crystal hole (CH) band crossing at a critical strain. Consequently, the band gap and hole effective mass under uniaxial strain are highly nonlinear. However, the electron effective mass at conduction band minimum (CBM) is linear to the CBM-HH energy difference. 
For the unstrained pristine CdX NWs along [0001] direction, the surface contraction can influence the character of the VBM state by changing the relation between the averaged axial bondlength and the averaged nonaxial bondlength. Large NWs with {10-10} facets have HH-like VBM state, while NWs with {11-20} facets or smaller diameters have CH-like VBM state. Under external uniaxial strain, due to the HH-CH band crossing at the critical strain induced by the switch of the averaged axial bandlength and the averaged bondlength, the band gap and hole effective mass show highly nonlinear variations, similar to the bulk. Unlike the bulk, the critical strain of NWs with HH-like and CH-like VBM appears at compressive and tensile range, respectively. Because of the different charge distributions of the HH and CH states, the charge distribution of the VBM state and the overlap between electron and hole states can be tuned by the external uniaxial strain. However, the electron effective mass of all NWs shows a good linear relation with the CBM-HH energy difference, the same as bulk.
In addition, we analysis the atomic structure and band gap of the core/shell NWs composed by CdX semiconductors. We consider the CdSe/CdS and CdSe/CdTe core/shell NWs with type-I and type-II band offsets, respectively. CdSe core region undergoes a spacially homogeneous but anisotropic compression and expansion, respectively. However, strain in the shell region is spacially nonhomogeneous and highly anisotropic. The electronic structure of core/shell NWs can be modified by the intrisic strain due to lattice mismatch and quantum confinement effect.
This study reveals the differences and similarities of the properties of CdX bulk materials and NWs under strain, would help to understand the strain effect on the electronic properties of nanostructures, and would provide a theoretical guide to synthesize nanostructures with desirable properies using strain engineering.

 

学科领域半导体物理
语种中文
公开日期2017-06-01
文献类型学位论文
条目标识符http://ir.semi.ac.cn/handle/172111/28163
专题半导体超晶格国家重点实验室
推荐引用方式
GB/T 7714
相琳琳. CdX(X=S, Se, Te)半导体体材料及纳米线应变效应的第一性原理研究[D]. 北京. 中国科学院研究生院,2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
毕业论文.pdf(2279KB) 限制开放使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[相琳琳]的文章
百度学术
百度学术中相似的文章
[相琳琳]的文章
必应学术
必应学术中相似的文章
[相琳琳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。